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The effect of the adiabatic exponent on certain features of shock-wave reflection is
analyzed with particular reference to the nature of the dependence of the critical
angle on the incident wave intensity. The latter is shown to increase with increasing
shock-wave intengity. Limit cases of weak shock waves at any arbitrary adiabatic
exponent and of strong shock waves with the adiabatic exponent equal to unity are
analytically investigated. Results of calculations of the critical angle for various
adiabatic exponents throughout the possible range of incident wave intensities are
presented.

1. The reflection of a shock wave from another or from a contact discontinuity (including a wall)
depends on the adiabatic exponent, particularly when the wave is sufficiently strong.

To simplify theoretical consideration of certain aspects of this problem the medium is assumed to
be perfect, so that its equation of state together with the Rankin-Hugoniot adiabatic equation can be written
as
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Here the notation is either obvious, or will be explained in the following :subscripts 0 and 1relate
to the state of the medium in front of and behind the shock, respectively, and it is assumed that y; = v, or

f1=ro-

The structure of the shock, whose width is assumed to be zero, is disregarded, i.e., dissipative ef-
fects, such as viscosity, thermal conductivity, etc., are neglected. In this formulation the assumption of
absence of heat exchange with the wall becomes superfluous.

In spite of this idealization of the medium it is reasonable to expect the results of this analysis to be
valid not only for media having various vy = const but, also, for those with varying adiabatic exponents.
This, for example, is to be expected under conditions in which an approximating substitution of a certain
mean value for a variable v is acceptable. However, since compression of a medium by a strong shock
wave depends only on its specific heat behind the shock, the problem is virtually reduced to the case of
Y = const.

2. The simplest explanation of the existence of adiabatic exponents of various magnitudes is pro-
vided by the assumption that 2/(y — 1) = f is the number of degrees of freedom of the medium mole-
cules in the so-called equidistribution approximation [1], according to which part of the possible de~
grees of freedom is unconstrained and the rest totally constrained, frozen. In this approximation f may
be, generally speaking, any of the series of natural numbers, Properties of a real gas are, however, better
approximated by the assumption of a continuous set of possible values of f or v, while formally maintain-
ing the "equidistribution" concept.
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In other words, we assume that 1 < f <,

The traditional cases are f =3 (all degrees of translational freedom unconstrained) and f=5 (plus
two degrees of rotational freedom).

With increasing temperatures and decreasing densities unconstrained degrees of freedom of oscilla-
tion become important, i.e., with f — 7 in the case of diatomic molecules (since the energy of oscillations
consists of kinetic and potential components). The omitted value of f=6 relates to any substance radiat-
ing at sufficiently high temperature and, more precisely, to an ultrarelativistic gas.

In air and other gases within certain ranges of shock velocities dissociation and ionization lead to
maximum values of f, i.e., minimum v. For example, the shock wave velocity D = 16 km/sec in an at-
mosphere of a density 107 of the standard density of air at 210 °K (an altitude of 97 km) corresponds to
f=21.3 or v = 1.09. Hence the interest in the asymptotic, "Newtonian," value of v = 1 when f —= 0.

Contrary to Sommerfeld's assertion [2] the values f =2 and f =1 can also be substantiated on physi~
cal grounds. The case of f =2 or v = 2 could be possibly interpreted as one of total suppression of one
degree of translational freedom of every charged particle in an ionized gas slowing across frozen magnetic
field lines. The second degenerated case of f = 1 or ¥ = 3 corresponds to the suppression of two degrees of
translational freedom of gas molecules flowing in the direction of magnetic field lines.

We would stress that this interpretation of f= 1 (y = 3) and f =+ = 2 has a definite meaning in the
case of one-dimensional flows only (plane, cylindrical and spherical shock waves).

It is desirable to investigate, in addition to the [behavior of] ionized gas in a magnetic field, the va-
lidity of f =1 for nonunivariate reflection of a shock wave in the "Landau-Stanyukovich gas" [3] in the
scattered products of chemical explosives, whose univariate motion is satisfactorily idealized by assuming
v = 3).

3. Before considering the effect of the adiabatic exponent on the "oblique" reflection of shock waves,

let us take note of the properties of "normal" reflection according to the law (first established by Hugoniot
in 1885)

pr__ 43— (po/p1) :{1+Po‘1AP (Ap<< po) (3.1)
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which clearly shows the influence of the effective number of degrees of freedom on the reflection of strong
shock — an effect whichis absent in the reflection of weak shocks. While individual properties of gas do not
(in this approximation) affect the reflection of weak shocks, the detection of reflection of a strong shock
makes possible to determine without difficulty the equation of state of a medium. In the trivial case of a
perfect gas it is sufficient to determine (in the system of coordinates of the unperturbed medium) the ve-
locitiesDyand D, of the incident and the reflected waves, respectively. The Mach number of a reflected
strong incident wave is (f + 2)1/2; hence

f=2D0

Dl_i

or

D
1< F =—f—-¥<w for. 1< f<oo.

®|

{3.2)
The law of temperature variation behind a reflected shock
T R 8
2<ﬁ:2<1+f—+2><'§ (3.3)

is less sensitive to the adiabatic exponent, i.e., to f.
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Measurements of velocities of the incident and reflected
shocks provide the necessary minimum of information for the for-
mulation of the equation of state of a medium. The most complete
information on the thermal state of a medium in motion would be
provided by methods of quantum optics applied to the direct deter-
mination of the velocity distribution of gas molecules in the hydro-
dynamic velocity field.

o
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4. Systematic theoretical and experimental investigations of
the dependence of the critical incidence angle of a shock wave (pbe-

\\[748

' J{/ yond @x , aregular reflection is impossible) on the wave intensity
was, until recently, confined to v = 1.4, although later publications
» [4, 5] provide certain data on the [functional] dependence a,(y) in
’ I N %4 15 gtrong shock waves, as well as general considerations on the effect

of the adiabatic exponent on the pattern of Mach reflection. (See V.
A.Belokon', "Problems of phenomenological and statistical thermo-
dynamics of shock waves," dissertation OPM-IPM, 1964-1967.) The use of experimental values of ay for
the determination of the equation of state of a medium (trivial in the case of f = const) was suggested in
[6]. One of the subtleties here is the fact that, while a regular reflection is not possible for & > ax, a Mach
reflection is nevertheless possible within a certain range of o < ay [7].

Fig. 1

Inadequate investigation of the Mach reflection and the lack of even superficial analysis of the many
effects predicted by known formulas may be, to a certain extent, due to the comparative newness of this
subject, since such reflections came to be understood only after the publication of works [8, 9]. Incidental -
ly, the formula defining the dependence of the critical angle on wave intensity, given in the classic mono-
graphs [7, 10], are incorrect, as noted by K. E. Gubkin.

An analysis of the [functional] dependence o, (py/py,¥) for the range of 1 = v = 3 is given below. The
generality of results is limited by the neglect of the (quantitative) dependence of y on Po/Py = &.

When analyzing the dependence of oy on the intensity of an incident shock wave, it is convenient to
represent the intensity as 1/£ = p;/p;- An analysis of the [functional] dependence ax(y} for asymptotically
strong shocks (¢ = 0) for certain values of v is given, e.g., in [4]. '

The analysis of this dependence for an arbitrary intensity of the incident shock had necessitated a
much more thorough examination of calculation results.

Equation
ax® + bxd +ex +d =0, r = tg? gy, 4.1)

which can be derived from the theory of regular reflections, was taken as the basis of calculations. Here
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The substitution y = x + b/3a transforms the input equation into

v+ 3py +29=0

where ‘ .
p=23ac—b]9%:2 qg=(b/3a)®—0bc]/6a®+d]2a

The solution of this equation depends on the signs of the discriminant D = q? + p® and of parameter p.
However, since p and g are fairly complex functions of £, numerical analysis on a computer was substitu-
ted for the cumbersome, if at all possible, analytical solution.
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The results of calculations of oy = ax(£) for various values of y are shown in the Fig, 1, where
curves 1, ..., 9 correspond to the following values of the adiabatic exponent:

1 2 3 4 g 6 7 &
T=1.00000 1.05 1.4 1.2 1.3 1.4 1.666667 2 3

As expected, the [functional] dependence of wx(£) for vy = 1.4 coincides numerically with that given in
[10]. The calculations show the increasing effect of the adiabatic exponent on the critical incidence angle
with increasing amplitude of the incident shock. Thus the effect of the adiabatic exponent is particularly
strongly pronounced in strong incident waves in the case of one~dimensional (normal) as well as in that of
"oblique" (inclined) reflections. (Note that ax = 89.6° for v = 1.00001 and ¢ = 0.)

A further remarkable property should be noted. It appears that for £ = 0.763, and independently of the
adiabatic exponent, we virtually always have o, = 50.8°.

In the limit case of weak shock waves the problem can be analytically investigated. In fact, for § — 1
Eq. (4.1) becomes

20y +1) (1 —82 -y — 292 —y =0, 4.2)
Its approximate solution can be written in the form

r=12(1+1]7%) -8

Hence
oy =arctg 2 (1 17y (1 — B, (4.3)
Expansion of the right-hand side of (4.3) into series in (1 — .5)1/2 yields
dy =y —Y 2T+ 1/M(T—F) . (4.4)

correct to within the first term of the expansion. This shows, in particular, that o, depends rather weakly
on .

We further note that at the limit of strong shocks (£ — 0) the coefficients of Eq. (4.1) depend only on
¥, and are reduced to

po 2rFhT 4P

d:’]’-{—i, Y —1 oy
co BUEDERL U
I VN 8y (1 —1)f

The case of v =1 or f =%, when compression in a strong shock is infinitely great, is of particular
interest. For v close to 1 the equation for x = tan20z* becomes

4 4 2
3 2 1. _— = U .
2z —{—T_iz Fo—12 G=IF 0

(4.5)

It follows from (4.5) that for y — 1 it can only be satisfied when x = =, i.e., when oy = 1/2 (for any
finite x the left-hand side of the equation would tend to — =, Hence a regular reflection os such shoch is
possible at any angle of incidence.

This can be ascertained by considering the shock polar curve, which for M = » and f = « degenerates
into a circle passing through the coordinate origin, thus ensuring the deflection of flow by any angle.
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